Виды защиты электрооборудования

Электрическая защита и распределение энергии между приемниками электрической энергии осуществляются с помощью электрических аппаратов.

Защита осуществляется автоматическим отключением поврежденного участка системы или подачей сигнала о нарушении нормального режима. Каждый элемент системы кроме основной защиты реагирующей на нарушения режима элемента системы может снабжаться резервной защитой, которая должна реагировать при отказах основной.

К защите предъявляются следующие требования:

  • быстродействие;
  • селективность;
  • надежность;
  • чувствительность.

Быстродействие определяется временем срабатывания tc. Различают защиты: мгновенного действия tc < 0,05с, быстродействующие 0,05<tc<0,5с и замедленного действия tc > 0,5с. Селективность обеспечивается соответствующим выбором типа защиты, ее параметрами и временем срабатывания. Чувствительность характеризуется коэффициентом Кч. Для максимальной защиты Kч=Xmin/Xc для минимальной Кч= Хс/Хмах. Хс - параметр срабатывания, Xmin и Хмах - соответственно, минимально и максимально возможные значения контролируемого параметра в аварийном режиме.

Для общепромышленного электрооборудования предусматриваются: максимально токовая защита (для быстрого отключения при коротком замыкании), защита от перегрузок для отключения цепи при длительном превышении номинального; защита минимального напряжения для отключения двигателей при опасном для них снижении напряжения; нулевая защита, предохраняющая от самозапуска двигателя, остановившегося после случайного перерыва в электроснабжении.

По назначению электрические аппараты делятся на четыре группы:

  • коммутирующие, производящие отключение и включение силовых электрических цепей в системах, генерирующих, передающих и распределяющих электрическую энергию;
  • аппараты управления (контакторы, пускатели, контроллеры, командоаппараты), управляющие работой электротехнического устройства;
  • реле и регуляторы, осуществляющие защиту и управление работой устройств с использованием логических задач;
  • датчики, создающие электрические сигналы (ток, напряжение), соответствующие определенным параметрам технологических процессов.

Коммутирующие аппараты можно разделить на три группы:

1.Автоматические выключатели.

2.Плавкие предохранители, выполняющие только разовое отключение при недопустимых нарушениях режима работы электротехнического устройства.

3.Неавтоматические выключатели (рубильники, пакетные выключатели и переключатели) выполняющие только ручное включение и отключение.

Коммутирующие аппараты классифицируются: по роду тока (переменный и постоянный) и уровням тока и напряжения (слаботочные - до 5А, сильноточные выше 5А, низкого напряжения - до 1000В и высокого выше 1000В); по числу разрываемых контактов - одно-, двух- и трехполюсные.

Автоматические выключатели классифицируются по выполняемым функциям защиты: минимального и максимального тока; минимального напряжения. Средством защиты в автоматах является электромагнитный (соленоид) и (или) тепловой (биметаллический элемен) расцепители.

Электромагнитный расцепитель защищает от токов короткого замыкания, а электромагнитный - от токов перегрузки.

Предохранители состоит из плавкого металлического элемента - вставки в виде тонкой проволоки или пластины и корпуса с контактным устройством. Плавкая вставка допускает длительное протекание тока, а при перегрузках или коротких замыканиях нагревается до температуры плавления металла и, расплавляясь, разрывает электрическую цепь. При токах выше 10А корпус предохранителя заполняется дугогасительным средством (фибра, кварцевый песок и др.)

Защитные свойства определяются типом предохранителя и номинальным током плавкой вставки. Время срабатывания - время плавления плавкой вставки. Полное время отключения цепи

tотк = tc + tд

tд- время гашения дуги, обычно от1мс до 10 мс.

По конструкции предохранители делятся на трубчатые и пробочные.

Реле защиты и управления осуществляют прерывистое управление при достижении какой либо величины заданного значения. Различают реле: тока, напряжения, тепловое, временное, положения, давления и т.д.

Реле состоят из трех функциональных органов: чувствительного, воспринимающего входную величину и преобразующего ее в электрическую; сравнения преобразованной величины с эталоном и передачи воздействия на исполнительный орган; исполнительного, который воздействует на управляемую электрическую цепь.

Реле содержит цепь, воспринимающую действие, и цепь, исполняющую действие, т.е. цепи оперативного тока. Цепь воспринимающая действие получает сигнал в виде повышения или падения сигнала. После чего реле срабатывает и замыкает цепь оперативного тока.

Так тепловое реле предназначено для защиты двигателя от перегрузки. При прохождении по нагревательному элементу (биметалическая пластина, состоящая из двух пластин с различным температурным коэффициентом линейного расширения) большого тока происходят его нагрев и изгибание, что приводит в действие защелку, разрывающую контакты оперативного тока. Тепловые реле имеют значительную тепловую инерцию и не могут мгновенно отключать электрическую цепь при коротких замыканиях. Поэтому последовательно с ними включают плавкие предохранители или реле максимального тока.

Кроме защиты от перегрузок, возникающих в симметричных режимах, реле максимального тока используется при защите от коротких замыканий.

Бесконтактные электрические аппараты

В качестве защитных аппаратов в настоящее время широкое распространение получили бесконтактные электрические аппараты.

Бесконтактные электрические аппараты воздействуют на электрическую цепь без физического разрыва. Основными их преимуществами являются: быстродействие, высокая скорость переключения; долговечность, срок службы определяется в основном старением компонентов, из которых они состоят; отсутствие контактов подвижных частей.

Принцип действия бесконтактных электрических аппаратов управления основан на использовании элементов с нелинейной вольт-амперной характеристикой: ферромагферромагнитные сердечники с обмотками (нелинейные индуктивности); активные нелинейные сопротивления, которыми обладают полупроводниковые приборы при сравнительно невысоких частотах электрического тока.

Нелинейные элементы включаются между источником питания и нагрузкой (управляемой цепью). Управление осуществляется изменением сопротивления нелинейных элементов электрическому току от минимального до максимального значения. Управляемая мощность в цепи нагрузки достигает при этом больших значений.

Указанное свойство, т.е. возможность с помощью сравнительно небольшой мощности в цепи управления управлять большой мощностью в управляемой цепи (нагрузке), характеризует бесконтактные аппараты как усилители.